

80

BIU Journal of Basic and Applied Sciences 3(1): 80 – 91, 2017.

©Faculty of Basic and Applied Sciences, Benson Idahosa University, Benin City, Nigeria

ISSN: 2563-6424

A COMPARISON BETWEEN FOUR SOFTWARE PROCESS MODELS

*IYAWE, G. O., AKHIDENO, I. A AND IGBINIGIE, P-C.

Department of Physical Sciences, Benson Idahosa University, Benin City, Nigeria,

*Corresponding author: gitegboje@biu.edu.ng

ABSTRACT

Over the years, developers have encountered some challenges with software development.

Software researchers have been able to develop process models that cater to the different

types of software application and if followed correctly can result in software that are

delivered on-time, cost effective and conform to user’s needs. Knowing the right process

model to use in software development can posed a challenge for software developers. This

research deals with Software Development Process and briefly describes four process

models which are: Waterfall Model, Spiral Model, Rapid Application Development (RAD)

and Extreme Programming (XP), outlining their advantages and disadvantages and making

a comparison to show the features and flaw of each model. These models were chosen

because they represent the Tradition lifecycle models and the Agile process model.

KEYWORDS: Software development, Software Engineering, Software Lifecycle, Process

Models

INTRODUCTION

The development of quality software

with little or no faults has been a great

challenge to the computer society, and

the NATO’s 1968 conference held in

Germany was as a result of a rapid

increase in the size, complexity of

software systems and the inability of the

software industry to provide the user with

high quality software on time. As

software projects and the size of systems

grew bigger in scope, more than one

person was required to develop the

system. Therefore, project teams were

needed to carry out large software

development. Managing the development

of these large systems also became a

problem, it was observed that most of the

software did not meet their requirements,

some were delivered late, some exceeded

their budgets and others were cancelled.

There was a need to ensure that these

problems were eliminated, hence the

introduction of a more disciplined and

structured approach to software

development. It was during the

conference that the discipline “Software

Engineering” was invented to study the

process of developing large and reliable

software.

According to IEEE, Software

Engineering is the application of a

systematic, disciplined, quantifiable

approach to the development, operation

81

and maintenance of software, that is, the

application of engineering to software.

Sommerville (2004). From this

definition, it can be noted that software

development is a step by step process and

in a predetermined order, and to ensure

that the development process can be

measured, a process model is needed so

that software products are developed in

the right order. When using a process

model; people, tools, methods,

requirements and standards are used to

develop the product.

Software Development Process
This section discusses the Software

development process which includes the

four fundamental activities in software

development. Each Phase produces

deliverables required by next phase in the

Software development.

Software systems are often large and

complex, therefore, there is a need to be

organised when carrying out a

development process. For long, the

process of developing large software

systems has been a huge challenge. The

Standish Group Report (1995) identified

some of these challenges as incomplete

set of software requirements, lack of user

involvement, insufficient budget and

schedule overruns.

Software process is a framework for

the tasks that are required to build high

quality software Pressman (2009). These

tasks may include the definition of

requirements, design of software

products, programming, implementation,

operation, maintenance and evolution. It

is apparent that software goes through a

series of processes starting from their

inception, initial development, operation,

maintenance until they eventually retire.

There is no ideal software process for

software development. This is due to

factors such as differences in software

system as a result of the goals of the

system, nature of the development team

working on the software system, amongst

other factors. However, software

development process permits

technologist to work together using

different approaches to develop quality

software. A software process is chosen

base on the nature of the system being

developed for example, safety critical

systems or systems with stable

requirements would require a very

structured software process (plan-driven)

while systems experiencing constant

changes to requirements for example,

business systems would require a less

formal (Agile) software process.

According to Booch and Rumbaugh

(1999) “A software process defines who

is doing what, when and how to reach a

certain goal”. There are several software

processes and but there are the four

fundamental software activities that are

common to these process Somerville

(2004). These activities are:

a. Specification

b. Development

c. Validation

d. Evolution

Specification
Specification is the first phase of

software development. In this activity,

the customers and developers define the

software that is to be produced and the

constraints on its operation.

The specification phase comprises of the

following:

i. Problem Definition

ii. Feasibility study

iii. Requirement gathering/Analysis

During the problem definition phase,

the problem is stated and defined by the

Iyawe et al. A Comparison between Four Software Process Models

82

user to the software project manager, a

feasibility study is then carried out so as

to gather the requirements for the

proposed system, which is further

analysed by a requirements analyst or the

development team.

Software Development
In this phase, the software is designed

and constructed. System modelling and

the software programming also take place

here. The requirements are used in the

software development. The development

process involves design and coding the

system. The software designers are

responsible for ensuring the interface

required for the system are designed

using the appropriate design tools, eg.

Flowchart, UML, and CASE tools, a

prototype of the actual system can also be

designed. Implementation is done to

translate this structure into executable

program.

Validation
This is where the software is checked

to ensure that the goals for which the

systems were developed have been

reached. In this activity, Verification and

Validation are carried out to on the

software system by both the development

team and the client to ensure that it meets

the users’ needs and conforms to the

requirements.

Software Evolution
This is the last phase of the software

development activities, this phase

encompasses maintenance and evolution.

Software Evolution is the dynamic

behavior of programming systems as they

are maintained and enhanced over their

lifetimes. The development of software

continues even after its deployment.

Large systems with potentials of having

longer life spans need to experience

changes in their lifetime to remain useful.

The changes that can affect any software

may be as a result of the following

factors.

i. Changes in requirements to reflect a

changing business, technology,

stakeholder or user needs.

ii. Changes in the environment of the

system due to the introduction of a

new hardware.

iii. System repair to remove/correct

errors in coding or design. This

could also be referred to as system

maintenance.

iv. A need to add new capabilities that

were previously thought to be

impossible.

Description of Software Process

Models
Sommerville (2010) define Software

Process Model as an abstract

representation of a process. It’s a step by

step process that ensures that the various

activities of Software development are

carried out in the right order.

Software Process Models can either

be Plan Driven or Agile Process. Plan

Driven Processes are usually heavily

documented and follow a plan e.g.

Waterfall Model while Agile Processes

are Flexible and can adapt to changes e.g.

Extreme Programming (XP).

There are several software process

models which are:

i. Linear Sequential Process Models:

Waterfall model- Specification and

Development are usually separate

and distinct.

ii. Evolutionary/Iterative Models: e.g.

Spiral Model, Prototyping Models,

RAD, and Concurrent Development

Model. – Specification and

Development are usually

interleaved. Specification. Initial

BIU Journal of Basic and Applied Sciences Vol. 3 no. 1 (2017)

83

system rapidly developed and then

refined with customer input.

iii. Incremental Model: Specification,

development and Validation are

interleaved. It may be Plan Driven

or Agile.

iv. Component Based Models: These

are reusable components which are

integrated into a system. i.e., they

are assembled from existing

components. They may be Plan

driven or agile.

Comparison of four process models
This section focuses on four Software

Development Process Models, outlining

the advantages and disadvantages of each

model and the suitable cases in which

these models can be applied. These

models are;

i. Waterfall Model

ii. Spiral Model

iii. Rapid Application Development

(RAD)

iv. Extreme Programming

These models were chosen because

their features correspond to both plan

driven and agile processes.

Waterfall Model
Lifecycle model development began

in 70’s with suggested Waterfall

approach as a pioneer in software

development. It is a disciplined,

structured and well-defined model that is

widely used in software engineering. This

model was proposed by Winston W.

Royce and was successfully used in the

industry during these years. The first

known presentation describing use of

similar model phases was held by Herbert

D. Benington at a Symposium on

advanced programming methods for

digital computers in 1956. Royce (1970)

first described the “Waterfall model” in

an article as a model in which additional

steps need to be added for it to be an

effective working model. However, he

never used the term “Waterfall Model”

throughout the article. The waterfall

model mirrors the linear sequential

(traditional lifecycle) methodology and is

typically used in highly structured

environments in which safety and

security is the number one requirements

for a system and also for systems that are

complex, mission-critical and future

changes are costly, if not impossible. The

Specification and Development phases

are usually separate and distinct.

Iyawe et al. A Comparison between Four Software Process Models

84

Fig 1: Diagram of the Waterfall Model

The Waterfall Model is often

represented as a step-by-step linear

structure as shown in fig 1. It involves

sequential task to be completed and well

scripted milestones. Each step has to be

completed before moving to the next step

and the entire functionality is developed

and then tested altogether at the end. The

idea behind this model is to gather

requirements and analysis at the early

stages to save time and effort later and

continue development, which is planned

out from the beginning until completion.

In Waterfall model, each phase is

extensively reviewed and documented so

as to prevent returning to a previous

phase as this can be costly.

Advantages

i. It reinforces good standard, i.e.

ensuring that a phase is thoroughly

completed and must meet good

standard before proceeding to another

phase because the deliverables of one

phase is the input of the next phase.

ii. It ensures that milestones and

deliverable are identified and met.

iii. It is easy to understand and

implement

iv. It results in certainty at each phase.

v. Waterfall model is documentation

driven. It lays emphasis on

BIU Journal of Basic and Applied Sciences Vol. 3 no. 1 (2017)

85

documentation such as requirement

and design documentation including

the source code. In waterfall model,

every phase calls for documentation

to be done, this helps the

development team in the next phase.

Documentation is very important

because it provides information and a

clear description. It helps track the

flow of a system.

Disadvantages

i. It freezes requirement which makes it

difficult to accommodate changes

ii. It is rigid and cannot accommodate

inevitable changes

iii. It can only be used for large projects

as it is costly for small projects.

iv. Software is usually delivered late.

Spiral Model

The failure of the Waterfall model to

address most of the issues that were

present in software development, which

was mainly evolving, and changing

requirements led to the spiral model,

which included improvement of the

former model and aspired to overcome

the limitations of the waterfall model.

In 1987, the defence science Board

Task Force Report on Military software

emphasized the concern that the

traditional process models were

discouraging effective approach to

software development such as

prototyping and software reuse.

Barry Boehm proposed the Spiral

Model, it is a risk-driven model that

incorporates the strengths of other

models such as the waterfall model and

resolves their difficulties. It creates a

risk-driven approach to the software

process rather than a primarily document-

driven process.

The spiral model was designed to

include the best features from the

waterfall model and the prototyping

models and also to introduce a new

component-risk-assessment. Risk

assessment is included as a step in the

development process to evaluate each

version of the system. The project can be

aborted if the customer decides that the

identified risks are too great.

In the spiral model, each version is

developed based on the steps of the

waterfall model. An initial version of the

system is created and presented to the

customer. Based on the customer

evaluation and feedback, repetitively

modified versions are developed. The

process of iteration continues throughout

the life of the software until the customer

is satisfied. The spiral model address risk

reduction, it plans ahead of the risks.

The first thing to do before

embarking on a new loop is to decide

what the major difficulties to be handled

are. Spiral model provides a rapid

development and at the same time

incremental versions of the software

application. It is iterative, and each

repetition is designed to reduce risk.

The Microsoft operating system is an

example of the application of the spiral

model. There was an evaluation of the

Microsoft windows operating system

from Windows 3.1 to Windows 2003.

The Microsoft Window 3.1 operating

system was the first iteration; the product

was released and evaluated by the

customers. After getting the feedback

from the customers, Microsoft developed

a new version of windows operating

system. Windows’ 95 was released with

the enhancement and graphical flexibility

and since then other versions of windows

operating system has been released.

Iyawe et al. A Comparison between Four Software Process Models

86

Fig. 2: Spiral Model
Source: Boehm (1988)

The Spiral model consists of four

phases as shown in figure 2 above, which

are: Planning, Evaluation, Risk Analysis,

and Engineering. Each loop in the spiral

represents a phase of the software process

e.g. system feasibility, requirements

definition, etc. Each loop split into four

sections: Objective setting, Risk

assessment and reduction, Development

and validation and Planning.

Each cycle in the model begins with

the identification of the objectives of the

product to be developed, certain factors

need to be considered, e.g.

Functionalities and performance, then an

alternative(s) means of implementing this

product is determined and the constraints

imposed on the application of these

alternatives are identified. The

alternatives can include, the cost of

developing the product, schedule etc.

Areas of uncertainty that can cause risks

are identify and resolved using cost

effective strategies or risk resolution

techniques such as Prototyping,

questionnaires etc. Once these risks have

been resolved, a prototype is developed,

the software is produced and validated

and the project continues to the next

spiral.

BIU Journal of Basic and Applied Sciences Vol. 3 no. 1 (2017)

87

Advantages

i. It is risk driven

ii. It can used for large and safety-

critical systems

iii. Software is developed early in the

software lifecycle.

iv. It is flexible and allows changes to be

implemented at different stages in the

development.

Disadvantages

i. It is time consuming and expensive.

ii. It is not suitable for small teams

iii. Risk analysis requires team members

with high expertise.

Rapid Application Development

Rapid Application Development was

developed by James Martins in 1991. It is

an incremental Software development

process model and one of the most

widely used and successful

implementation of prototyping. It is

suitable for information systems, web-

based, and e-commerce system and aims

to shorten the lifecycle and produce

system quickly to accommodate

increasing changes in requirements.

Martins (1991) defines RAD as a

generalised lifecycle of a software

application development, designed to

construct applications much faster, of

higher quality than the traditional life

cycle.

The RAD life cycle consists of:

Requirements planning, user design,

construction and cutover. The user is

greatly involved in the requirements

planning phase, the developers use these

requirements for the design phase, and

the design phase is based on a

prototyping cycle and requires

experienced users and developers. The

code is generated in the Construction

phase and thereafter, testing and user

training in the cutover phase. The

development are time boxed, and series

of functional prototypes are delivered

within this time box, and an iterative

process continues until the end of the

time box or the application is functionally

complete. This enable the software to be

delivered on time and gives the

customers deliverables to see and use.

Fig. 3: RAD Process Concept

Iyawe et al. A Comparison between Four Software Process Models

88

RAD combines effective tools,

techniques, and incremental prototyping.

These techniques are: Joint Application

Development (JAD), Rapid Prototyping,

SWAT team (Skilled with Advanced

Tools), Reusability and Time boxing.

Advantages

i. It encourages customer’s involvement

and feedback.

ii. Time boxing ensures that immediate

needs are met and products are

delivered on time.

iii. Reduced development time.

iv. It is flexible and can readily adapt to

changes in requirements.

Disadvantages

i. It can only work for certain systems

e.g. Business systems.

ii. It is dependent on modelling skills.

iii. It requires highly skilled designers

and developers.

Extreme Programming

There have been issues with software

development especially with existing

process models and there is a necessity to

produce software that meets user’s

requirements, delivered on time and

within budget. Traditional process

models failed to address these issues;

they are good at addressing the known

and not the unknown. Adapting to

changes is one of the many limitations of

the traditional process models. The spiral

Model meeting budgetary and scheduling

requirements is tough given that the

iterative development usually spans a

long time and is sometimes never ending.

Hence the need for process models that

are can address the weaknesses of the

traditional process models.

The reason behind the development

of the agile process models is that, in

software development, requirements

cannot be fully predicted from the

beginning but will always change as the

project goes on.

The Agile Manifesto states that:

i. Individuals and interactions over

processes and tools

ii. Working software over

comprehensive documentation

iii. Customer collaboration over contract

negotiation

iv. Responding to change over following

a plan

The Agile Process models are: Extreme

Programming, Scrum, Feature Driven

Development, Crystal, Adaptive

Software Development, etc.

Extreme programming was adopted

because other existing practices failed to

address the issue of changes in

requirements. The reason behind the

development of XP is that, in software

development, requirements cannot be

fully predicted from the beginning but

will always change as projects moved on.

Extreme programming is a

lightweight (or agile) software

methodology that is credited to Kent

Beck, Ron Jeffries, and Ward

Cunningham. Its core values are

simplicity, courage, respect, feedback and

communication, it is about social changes

and addresses most of the limitations of

the traditional methods. The

technological/business rationale that led

to extreme programming was a failed

payroll project by Chrysler to determine

the best use of object-oriented

technologies (Beck 2000).

XP favours collaborations between

the development team and the users and

ensures that there is continuous feedback

from the Stakeholders. Feedback entails:

feedback from the system (Unit or

Integration testing), feedback from the

BIU Journal of Basic and Applied Sciences Vol. 3 no. 1 (2017)

89

customers (Acceptance test written by the

users and customers) and feedback from

the development team. Fig 4, show the

Extreme programming practices.

Fig. 4: Extreme Programming Practice

Source: www.xprogramming.com

Advantages

i. Short releases allow the system to evolve.

ii. Having an onsite customer can help in requirement elicitation.

iii. Pair programming can enhance the software quality.

iv. It is cost effective.

v. It is flexible and responsive to change

Disadvantages

i. It is not well defined and does not involve proper documentation.

ii. It may not measure code quality assurance.

iii.

Iyawe et al. A Comparison between Four Software Process Models

90

Table 1 Comparison between the four software process models
Model/Features Waterfall Spiral RAD Extreme

Programming

Document/Plan

Driven

Yes Yes Low Little/No

Risk Driven Only at the

beginning

High Low No

User Involvement During the

requirement

phase

High Yes Very High

(Throughout the

development)

Flexibility Rigid Low Yes Very flexible

Adaptable to

changes

Rigid Yes Yes Yes

Cost Low Highly Expensive Low Low

Overlapping

Phases

No (Separate and

distinct phases)

Yes

(Interleaved)

Yes

(Interleaved)

Yes

Scalability Suitable for large

Projects

Suitable for large

Projects

Suitable for

medium and

small scale

Projects

Suitable for

medium and

small scale

Projects

Types of Projects Safety-Critical

system

For systems with

high risk

Information and

web-based

systems

Business and

information

systems

When to use When Standards

are known and

Domain will not

change

When the

projects is high

risk

When the system

has unstable

requirements

When the system

has unstable

requirements

CONCLUSION

Whether it is the Linear Sequential

Process model for the Waterfall

methodology or the Components Based

Process Model for Extreme Programming

and the evolutionary/iterative process

model for the Spiral and Rapid

Application development models, the

choice of process model to be used is

usually determined by the nature and

scope of the project. Factors such as the

size of the project, complexity of the

project, budget and requirements all play

a key role in the success of the process

model chosen and the software quality

produced. For safety-critical and large

systems, plan driven approach should be

used and for medium to small scale

systems with changing requirements,

agile methods should be used.

REFERENCES

Beck, K. and Andres, C. (2000). Extreme

Programming Explained: Embrace

Change. 2nd ed. USA: Addison-

Wesley Professional

Boehm, B. W. (1988). A Spiral Model of

Software Development and

Enhancement, IEEE 61-72.

Boehm, B. W. (2007). Software

Engineering: Lifetime

Contributions to Software

Development, Management and

Research 2nd ed. USA: John Wiley.

BIU Journal of Basic and Applied Sciences Vol. 3 no. 1 (2017)

91

Booch, G., Rumbaugh, J. and Jacobson,

I. (1999). The Unified Modelling

Language User Guide. Addison-

Wesley Professional.

Brookset F. P. (1987). Defence Science

Board Task Force Report on

Military Software, Office of the

Under Secretary of Defence for

Acquisition, Washington, DC.

Doolan, M. A, (1996) Rapid Application

Development. Hatfield, University

of Hertfordshire.

Jeffries, R. E. (1999). What is Extreme

programming [online] Available at:

<http://xprogramming.com/book/w

hatisxp> [Accessed: 05 July 2018]

Martins, J. (1991). Rapid Application

Development. Macmillian. pp. 81-

90.

Nabil, M. and Govardhan, A. (2010). A

Comparison between Five Models

of Software Engineering.

International Journal of Computer

Science Issues (JCSI), 7(5):94 -101.

Pressman, R. (2009). Software

Engineering: A Practitioner’s

Approach. 5th Edition. McGraw-

Hill Higher Education.

Ratnmala, R. R. and Haresh, M. R.

(2013). Comparative Study of

Various Process Model in Software

Development. International Journal

of Computer Applications, 82(18):

0975 – 8887.

 Royce, W. W. (1970). Managing the

development of large software

systems. Available at

http://www.cs.umd.edu/class/spring2003/

cmsc838p/Process/waterfall.pdf

[Accessed: 03 July 2018]

Sommerville, I. (2004). Software

Engineering (7th ed.). Harlow,

Essex, UK: Addison Wesley.

Sommerville, I. (2010). Software

engineering; 9th edition, USA,

Addison-Wesley.

Subbarayudu, B., Srija, H. D.,

Amareswar, E., Gangadhar, R. and

Kishor, K. (2007). Review and

Comparison on Software Process

Models. International Journal of

Mechanical Engineering and

Technology (IJMET), 8(8): 967–

980.

The Standish Group Report, (1995).

Chaos, Available at:

http://www.projectsmart.co.uk/docs

/chaos- report.pdf [Accessed: 03

July 2018]

Wells, D. (2009). Extreme Programming:

A gentle introduction [online]

Available at

 www.extremeprogramming.org

[Accessed 05 July 2018]

Iyawe et al. A Comparison between Four Software Process Models

